Programming model of 8085 microprocessor
..............................................................................................................
In the previous tutorial we described the 8085 microprocessor registers in reference to the internal data operations. The same information is repeated here briefly to provide the continuity and the context to the instruction set and to enable the readers who prefer to focus initially on the programming aspect of the microprocessor.

The 8085 programming model includes six registers, one accumulator, and one flag register, as shown in Figure. In addition, it has two 16-bit registers: the stack pointer and the program counter. They are described briefly as follows.
Program Counter (PC)
This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a 16-bit register.

The microprocessor uses this register to sequence the execution of the instructions. The function of the program counter is to point to the memory address from which the next byte is to be fetched. When a byte (machine code) is being fetched, the program counter is incremented by one to point to the next memory location

Stack Pointer (SP)
The stack pointer is also a 16-bit register used as a memory pointer. It points to a memory location in R/W memory, called the stack. The beginning of the stack is defined by loading 16-bit address in the stack pointer.
This programming model will be used in subsequent tutorials to examine how these registers are affected after the execution of an instruction.
Registers
The 8085 has six general-purpose registers to store 8-bit data; these are identified as B,C,D,E,H, and L as shown in the figure. They can be combined as register pairs BC, DE, and HL - to perform some 16-bit operations. The programmer can use these registers to store or copy data into the registers by using data copy instructions.

Accumulator
The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This register is used to store 8-bit data and to perform arithmetic and logical operations. The result of an operation is stored in the accumulator. The accumulator is also identified as register A.

Flags
The ALU includes five flip-flops, which are set or reset after an operation according to data conditions of the result in the accumulator and other registers. They are called Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags; their bit positions in the flag register are shown in the Figure below. The most commonly used flags are Zero, Carry, and Sign. The microprocessor uses these flags to test data conditions.
For example, after an addition of two numbers, if the sum in the accumulator id larger than eight bits, the flip-flop uses to indicate a carry -- called the Carry flag (CY) -- is set to one. When an arithmetic operation results in zero, the flip-flop called the Zero(Z) flag is set to one. The first Figure shows an 8-bit register, called the flag register, adjacent to the accumulator. However, it is not used as a register; five bit positions out of eight are used to store the outputs of the five flip-flops. The flags are stored in the 8-bit register so that the programmer can examine these flags (data conditions) by accessing the register through an instruction.

These flags have critical importance in the decision-making process of the microprocessor. The conditions (set or reset) of the flags are tested through the software instructions. For example, the instruction JC (Jump on Carry) is implemented to change the sequence of a program when CY flag is set. The thorough understanding of flag is essential in writing assembly language programs.

Sign Flag (S): After execution of any arithmetic and logical operation, if D7 of the result is 1, the sign flag is set. Otherwise it is reset. D7 is reserved for indicating the sign; the remaining is the magnitude of number. If D7 is 1, the number will be viewed as negative number. If D7 is 0, the number will be viewed as positive number.

Zero Flag (z): If the result of arithmetic and logical operation is zero, then zero flag is set otherwise it is reset.

Auxiliary Carry Flag (AC): If D3 generates any carry when doing any arithmetic and logical operation, this flag is set. Otherwise it is reset.

Parity Flag (P): If the result of arithmetic and logical operation contains even number of 1 s then this flag will be set and if it is odd number of 1 s it will be reset.

Carry Flag (CY): If any arithmetic and logical operation results any carry then carry flag is set otherwise it is reset.
Home
8085 Forum
8085 Free Projects
8085 Free Programs
8085 Tutorials
8085 details
Interfacing Techniques
Electronic Tutorials
Electronic Projects
Assembler/ IDE
Datasheets
Guest Book
About Me